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Rehabilitative Ultrasound Imaging:
Understanding the Technology and

Its Applications

rom an historical perspective, ultrasound imaging (USI)
has been used for medical purposes since the 1950s. The
primary use of USI continues to be for traditional radiological

goals,

which consider the morphological characteristics

and structural integrity of various organs and tissues. However,
as the technology has been embraced as a safe, portable, objective,
and relatively inexpensive means of examination, the ingenuity
and diversity of applications has extended beyond these realms.

Ultrasound imaging related to muscu-
loskeletal rehabilitation has been devel-
oping rapidly since the 1980s. The first
report of muscle imaging linked to reha-
bilitation was in 1968, when Ikai and Fu-
kunaga® related the size of the upper arm
muscles to strength. However, it was the
work of Dr Archie Young and colleagues

at the University of Oxford in the 1980s
that sowed the seeds for the use of USI by
physical therapists. A striking finding of
their work was how dramatic limb mus-
cle wasting is underestimated with a tape
measure.'** Several studies of the quadri-
ceps muscle followed, including investi-
gation of the effect of knee joint injury,

© SYNOPSIS: The use of ultrasound imaging by
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strength-training protocols, and aging
on muscle size, and the relationship be-
tween muscle size and strength in differ-
ent populations (see Stokes and Young!*
for a review). This early research used
compound B-scanning, which enabled
whole cross sections of large muscles to
be captured, because the image could
be built up as the transducer was moved
over the skin. The compound technique,
which was expensive, was phased out as
a routine tool and replaced by real-time
USI (definitions are provided in the AP-
PENDIX) both in general medical and mus-
culoskeletal settings.

A recent (1990s) resurgence in the
interest of rehabilitative applications of
USI has been seen amongst clinical ther-
apists. This stems from a series of studies
in which USI was used to detect atrophy
of the lumbar multifidus (isolated to
the side and spinal level of symptoms)
in individuals with acute low back pain
(LBP),” as well as to determine that re-
covery of this muscle was not automatic
when pain subsided,* thus required
specific training to reduce risk of future
episodes.*” In addition, these studies
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suggested that the biofeedback provided
by USI might facilitate the relearning
process. Since that time, applications of
USI with respect to many other muscles
of the trunk and limbs continue to be
investigated."?

Current applications of USI in reha-
bilitation essentially fall into 2 distinct
areas of musculoskeletal imaging: re-
habilitative USI (RUSI) and diagnostic
imaging. The former, which is the topic
of this special issue, includes evalua-
tion of muscle structure (morphology)
and behavior, as well as the use of USI
as a biofeedback mechanism. Specifi-
cally, this includes the measurement of
morphological features (morphometry),
such as muscle length, depth, diameter,
cross-sectional area, volume, and pen-
nation angles; changes in these features
and the impact on associated structures
(fascia and organs such as the bladder)
with contraction; tissue movement and
deformation (eg, high-frame-rate USI
and elastography); and qualitative evalu-
ation of muscle tissue density. Alterna-
tively, diagnostic USI involves examining
the effects of injury or disease on liga-
ment, tendon, and muscle tissues, which
requires different skills and training than
those needed for RUSIL.*

In May 2006, the first international
meeting on RUSI was hosted by the US
Army-Baylor University Doctoral Pro-
gram in Physical Therapy in San Antonio,
TX. The purpose of the symposium was to
develop best practice guidelines for the use
of USI for the abdominal, pelvic, and para-
spinal muscles, and to develop an interna-
tional and collaborative research agenda
related to the use of USI by physical thera-
pists. At that symposium the participants
agreed on the use of the term RUSI. In ad-
dition, a position statement (below) was
created to help define this emerging tool in
the field of physical therapy.'?® This state-
ment, along with a visual representation
of how the practice of RUSI fits into the
larger field of medical USI, was endorsed
by delegates (FIGURE 1):

“RUSI is a procedure used by physical
therapists to evaluate muscle and related

soft tissue morphology and function dur-
ing exercise and physical tasks. RUSI is
used to assist in the application of thera-
peutic interventions aimed at improving
neuromuscular function. This includes
providing feedback to the patient and
physical therapist to improve clinical
outcomes. Additionally, RUSI is used in
basic, applied, and clinical rehabilitative
research to inform clinical practice. Cur-
rently, the international community is de-
veloping education and safety guidelines
in accordance with World Federation
for Ultrasound in Medicine and Biology
(WFUMB). Dated: 10 May, 2006.”2¢

In addition to defining the scope of
USI with respect to physical therapy, the
position statement and diagram are in-
tended to guide therapists in acknowledg-
ing professional boundaries, as ultimately
the delegates’ goal is to see RUSI accepted
within the medical-imaging field. How-
ever, as the use of USI (both rehabilitative
and diagnostic) by physical therapists is
in its infancy, the need to establish train-
ing facilities for therapists in conjunction
with other imaging disciplines, including
their professional bodies, where possible,
is recognized as a priority.

This commentary aims to provide an
overview of basic USI and instrumenta-
tion principles as they relate to RUSI.

This will include an introduction to the
various modes of imaging, how USI fits
with respect to other more commonly
known imaging technologies, the type
of information that USI applications
can provide, how these applications may
be of value to the researcher and clini-
cian, as well as potential future lines of
investigation.

BASIC PRINCIPLES OF SOUND
WAVE PROPAGATION AND
INSTRUMENTATION

HIS SECTION IS INTENDED TO PRO-
Tvide a basic understanding of the

principles that underlie USI. The ge-
neric characteristics of USI units and the
physical properties of sound wave propa-
gation will be discussed. As a complete
appraisal of these topics is not possible
in this forum, the reader is encouraged
to refer to more thorough resources for
further discussion.”%

The Physical Properties of Sound

Ultrasound is defined as sound with a fre-
quency greater than 20 000 Hz, which is
the upper limit of the range registered
by the human ear. USI uses sound waves
primarily in the range of 3.5 to 15 MHz.
Ultrasound waves behave according to
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FIGURE 1. Fields of medical ultrasound imaging. Reproduced from Teyhen (2006)?® with permission. Adapted from
Stokes (2005)8 with permission from University of Southampton.

Musculoskeletal
Imaging

-

REHABILITATIVE
ULTRASOUND IMAGING
Evaluation/Biofeedback
Physical Therapists

JOURNAL OF ORTHOPAEDIC & SPORTS PHYSICAL THERAPY

VOLUME 37 | NUMBER 8 | AUGUST 2007 | 435



principles that apply to all sound waves,
which at the most fundamental level are
mechanical waves that travel via particle
vibration. Specifically, the source of a
sound creates oscillatory vibrations that
affect particles in the medium that lies ad-
jacent to it. These particles, in turn, affect
their adjacent particles, and so on. This
process is referred to as wave propaga-
tion.®! How far a sound wave propagates
and whether an echo is produced depends
on the strength of the sound source, the
properties of the media through which
the sound has to travel, and the number,
shape, and properties of the objects it en-
counters.” These behaviors can be sum-
marized by the principles of penetration
and attenuation.

Penetration Penetration refers to the
ability of sound to travel (depth) and is
influenced by the intensity (strength or
loudness), frequency, and speed of a sound
wave. The intensity of an ultrasound wave
refers to the rate at which energy is deliv-
ered per unit area and is determined by the
total power output (W) of an ultrasound
transducer, divided by its area (cm?), and
is expressed in units of mW/cm?. As the
intensity of an ultrasound wave increases,
so does the depth it can penetrate, the
strength of the echo that it can generate,
and the potential it has to induce biologi-
cal effects (heat and cavitation) within the
tissues it is traveling through.

Frequency is defined as the number
of oscillations that a wave undergoes in
1 second and is expressed in hertz (Hz).
The higher the frequency of sound, the
less the emerging wave will diverge. Due
to their relatively high frequency, ultra-
sound waves are cohesive and can be
used to selectively expose a target area.
The frequency of an ultrasound wave is
determined in the construction of the
transducer assembly. As a general rule,
the lower the frequency of a sound wave
the farther it will penetrate.

The speed at which an ultrasound
wave travels is determined by the density
and stiffness of the structure or medium
it is traversing. The more rigid the media
the faster sound will travel through it.

[ CLINICAL COMMENTARY ]

The average speed at which sound travels
through soft tissue is 1540 m/s, which is
similar to the velocity that it would travel
through water (1485-1526 m/s).** Fat is
less stiff than most soft tissue. Hence
sound traverses it at a slightly slower
speed (1450 m/s). Muscle and bone are
stiffer and consequently sound propa-
gates faster through them (1585 m/s and
3500m/s, respectively).

Attenuation As an ultrasound wave
propagates, it encounters changes in tis-
sue densities, or interfaces. Each tissue or
medium has a characteristic resistance
to sound referred to as acoustic imped-
ance. This value is dependent upon the
density of the medium and the speed at
which sound can travel through it. At
each interface between media of dissimi-
lar impedance, an ultrasound wave will
react and lose energy. Consequently, the
energy within a sound wave decreases as
it penetrates, until it is completely dis-
persed. This phenomenon, referred to
as attenuation, occurs through the pro-
cesses of reflection, scattering, refrac-
tion, and absorption. Although the first
3 processes contribute to the dispersion
of an ultrasound wave, most of its energy
is absorbed by the surrounding tissue in
the form of heat.”

When a sound wave encounters an in-
terface, the portion that is reflected back
to its source is referred to as “reflection”
and serves as the basis for image forma-
tion. The strength of a reflection depends
on the size of the reflecting medium, the
roughness of its surface, the incident
angle of the sound wave, and the differ-
ence in impedance of the 2 media that
create the interface.” The more regular
the surface, the greater the difference in
impedance between tissues and the more
perpendicular the incidence angle; hence
the greater the reflection and brighter
(more white) the interface appears within
the ultrasound image. An obvious exam-
ple of this is the interface between bone
and muscle (FIGURE 2). Not only is there
a significant difference in the impedance
of these 2 tissues, but bone attenuates a
high percentage of the incident sound

FIGURE 2. A parasagittal ultrasound image of the mul-
tifidus (MF) muscle in the plane of the zygapophyseal
joints (Zyg). Note the increased echogenicity at the
muscle-bone interface. Reproduced with permission
Whittaker 2007.142

wave and, consequently, obscures the
view of deeper structures.

A sound wave can also scatter or re-
fract when it encounters an interface
between heterogeneous media. If, for
instance, the structures that comprise an
interface are very small, portions of the
wave will be scattered. Those portions
that travel back to the transducer are used
in image formation, while those that scat-
ter (the majority) are not. Alternatively, if
there is either a significant difference in
the speed that sound can travel though
the 2 tissues or if the interface is not at
a right angle to the ultrasound wave, the
wave will change its direction when it
crosses the boundary. This is referred to
as refraction and it too can be a detriment
to image formation through production
of positional errors.

The practical implication of attenua-
tion is that it limits penetration and con-
sequently the depth of the images that can
be generated.” Attenuation and frequency
have a direct relationship: the higher the
frequency of an ultrasound wave, the
greater the attenuation and the more shal-
low its penetration. Conversely, the more
attenuation, the more reflection and the
better the detail resolution (ability to show
detail) demonstrated in the ultrasound im-
age. Consequently, the choice of frequency
used for an imaging application will be de-
pendent upon the depth of the region or
structures of interest. Higher frequencies
(7.5-10.0 MHz) are more valuable for ex-
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FIGURE 3. (A) Depiction of the enhancement of a region deep to a fluid-filled structure. Enhancement occurs as
there is less attenuation of the propagating sound wave as it travels through a fluid-filled structure. (B) A transverse
ultrasound image demonstrating enhancement of the midline pelvic floor structures deep to the bladder. Reproduced
with permission Whittaker 200742
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FIGURE 4. (A) Depiction of how an acoustic shadow forms behind a strongly attenuating (hyperechoic) structure
such as bone. (B) A transverse ultrasound image demonstrating acoustic shadowing (AS) caused by the posterior
elements of a lumbar vertebra. Abbreviations: L, lamina; MF, multifidus; SP, spinous process. Reproduced with per-
mission Whittaker 2007142
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FIGURE 5. (A) Depiction of an edge shadow produced when a sound wave is refracted (bent) around the edges of a
fluid filled structure. (B) A transverse ultrasound image demonstrating edge shadowing (ES) caused by the bladder.
Reproduced with permission Whittaker 2007.42

amining superficial structures (superficial  structures (deeper muscles, the bladder,
muscles, ligament, and tendons) and low- and contents of the abdominal/pelvic
er frequencies (3.5-5.0 MHz) for deeper cavities). As a general rule, the highest

frequency transducer that can image an
area of interest should be used.'®
Artifact USI devices generate images
based upon several assumptions: sound
travels in straight lines, echoes only origi-
nate from objects located in the 2 dimen-
sions of the sound beam, the amplitude of
an echo is directly related to the reflect-
ing or scattering properties of the objects
it encounters, and the speed at which
sound travels through all the tissues is a
constant 1540 m/s.” If any of these as-
sumptions are violated, incorrect repre-
sentations of anatomy can occur. These
incorrect representations are referred to
as “artifacts” and can also be the result
of improper equipment operation or im-
aging technique. Artifacts can be both
a help and a hindrance, and result in
situations in which structures are either
not real, missing, improperly located, or
of improper brightness, shape, or size.
Those which have a greatest impact on
RUSI include enhancement, shadowing,
and reverberation.

Acoustic enhancement refers to an in-
crease in the amplitude of the ultrasound
echo coming from a structure that lies
behind a weakly attenuating structure,
such as a fluid-filled cavity (eg, bladder
[FIGURE 3]).7 As the ultrasound device as-
sumes that there is uniform attenuation
of the ultrasound wave as it propagates,
the tissues on the far side of the trans-
mitting structure appear brighter than
they should, as they are being exposed
with a less attenuated beam. When this
occurs, gain settings can be manipulated
to compensate.

Acoustic shadowing is the opposite of
enhancement. It refers to a reduction in
the sound wave echo from structures that
lie behind a strongly attenuating struc-
ture, such as bone (FIGURE 4)."'° Specifical-
ly, ultrasound waves hit something that
blocks their path and everything behind
the blocking structure appears black, as
if it were within an “acoustic shadow.” A
shadow can also occur as a sound beam
is refracted (bent) from its original path
by passing close to a large, curved, fluid-
filled structure (FIGURE 5).%61
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Reverberation refers to multiple re-
flections and is a result of ultrasound
echoes bouncing between tissue layers
and the transducer. Specifically, when an
echo from a highly reflective surface that
lies parallel to the transducer face returns
to the transducer, a portion may be re-
flected back into the tissue to meet the
same interface, where it again is reflected
back to the transducer. Due to the time
delay of the echoes being registered at the
transducer, the depth of that interface is
portrayed progressively deeper within the
tissue. As the reflective echoes become
weaker, the artifact fades out (FIGURE 6).

Instrumentation

A typical USI device is a pulsed-echo
(generates a series of short ultrasound
waves at regular intervals) instrument
consisting of 2 components: a transduc-
er assembly (commonly referred to as a
“transducer” or “probe”), and an imaging
system. The transducer is responsible for
generating ultrasound waves, as well as
receiving the ultrasound echoes return-
ing from the tissues and converting them
into electrical signals. The imaging sys-
tem is the component of the technology
that receives the electrical signals rep-
resenting the echo from the transducer
and processes them so that they can be
displayed as a digital image.

Imaging System A USI system consists
of 4 generic components: the beam for-
mer, signal processor, image processor,
and visual display.” In general terms, the
beam former is responsible for generat-
ing the electrical impulses that drive the
transducer assembly, as well as for ampli-
fying and digitizing the electrical signal
returning from the transducer assembly
that represents the ultrasound echo. The
signal processor is responsible for filter-
ing and compressing the electrical signal
before the image processor converts the
signal into an image presented on the in-
struments display.”™

Transducer Assembly (Probe) A trans-
ducer assembly houses an array of crystals
(transducers), their electrical connections,
an acoustic lens, and damping material.

[ CLINICAL COMMENTARY ]
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FIGURE 6. (A) Depiction of reverberation which is caused when a portion of the ultrasound echo from a highly reflective
surface, lying parallel to the transducer, is reflected back into the tissue to meet the same interface where it again is
reflected back to the transducer. The time delay falsely portrays that interface at 1 or more levels deeper in the tissue
structure. (B) An ultrasound image demonstrating reverberation (lines on the left side of the image) produced by the
interface between the transducer and air at the skin surface (inadequate use of gel).

By definition, a transducer is a device that
converts one form of energy to another.”
Ultrasound transducers (also referred to
as “elements” or “crystals”), commonly
a ceramic formulation of lead zirconate
titanate, are piezoelectric elements that
produce voltage (electrical energy) when
deformed by an applied pressure such
as a sound wave (acoustic energy).” Al-
though not technically accurate, a trans-
ducer assembly is generally referred to as
simply a transducer or probe (the term
transducer will be used throughout this
commentary). The arrangement and the
operating frequency of the crystal ele-
ments, as well as the width of the field of
view (in metric) produced, are all taken
into consideration when describing a
transducer.

The arrangement, or array, of the ele-
ments within a transducer can be linear or
curved (also referred to as “curvilinear”).
A linear transducer contains many small
rectangular crystal elements mounted side
by side across its face. By triggering the
elements sequentially, a rectangular im-
age is built up from many vertical, parallel
scan lines with a width that approximates
the length of the array.” The advantage of
a linear array is its wide near field, which
is appropriate for imaging small superfi-
cial structures (FIGURE 7). A curved trans-
ducer is similar except that the crystal
elements are formed into a curve rather
than a straight line, which results in a di-

verging (pie or sector shaped) image (FIG-
URE 8). The advantages of a curved array
is its wide far field, coupled with a small
“footprint,” which is suitable for imaging
deep abdominal structures.

A typical ultrasound transducer pro-
duces a range of frequencies around a
preferred (maximum efficiency) fre-
quency that is referred to as the “operat-
ing frequency” or “resonance frequency.”
The operating frequency of an ultrasound
transducer is predetermined by the thick-
ness of the crystal elements. It is com-
monplace that a transducer may have 2
distinct operating frequencies (eg, 3.5
and 5.0 MHz, or 7.5 and 10.0 MHz) and,
indeed, some are multifrequency.

BRIGHTNESS MODE AND
MOTION MODE USI

HERE ARE SEVERAL OPTIONS

(modes) available to display the

electrical signal representing the
ultrasound echo that returns from the
tissues. The most common modes of dis-
play employed in rehabilitative settings
are “B” (brightness, brilliance) and “M”
(motion, movement) modes (b-mode and
m-mode, respectively).

B-Mode USI

B-mode displays the ultrasound echo as
a cross-sectional grey-scale image and is
the mode of display most typically associ-
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FIGURE 7. (A) A linear array ultrasound transducer.
(B) A sagittal ultrasound image of the thoracic spine
generated using a 7.5- to 10.0-MHz linear array trans-
ducer. Abbreviations: PV, paravertebral musculature; TP,
transverse process. Note the linear footprint and the
rectangular nature of the image.

ated with USI (FIGURE 9A). B-mode images
provide information gathered from the
entire length of the transducer and consist
of visible dots or pixels of varying degrees
of brightness that represent the location
and density of structures encountered by
the ultrasound beam. The brightness of
each pixel depends on the strength of the
echo, which in turn is determined by the
location and characteristics of the echo-
generating structure. The position or plot
of a pixel is established by considering the
direction of an ultrasound wave when it
enters the body, the length of time it takes
for the echo to return to the transducer,
and the speed at which sound can travel
through soft tissue.'*®

In contrast to other modes of display
(eg, m-mode), the relatively large field of
view available to b-mode, combined with
the real-time nature of USI, presents an
opportunity to view several structures
at once and, if warranted, over time.
Consequently, it can be used to depict
the morphology (eg, shape, size, com-
position, and resting state) of a struc-
ture (eg, muscle, nerve), the positional
relationship of several structures (eg,
muscle, nerve, bone, or organs such as
the bladder), as well as the characteris-

o

FIGURE 8. (A) A curved or convex array transducer.
(B) A sagittal ultrasound image generated from the
same location as in Figure 7B, using a 3.5- to 5.0-MHz
curved or convex array transducer. Abbreviations: PV,
paravertebral musculature; TP, transverse process.
Note the curved footprint and the pie or sector nature
of the image.

tics (simultaneous versus independent,
or phasic versus sustained increase in
muscle thickness) and the influence of
a dynamic event, such as a muscle con-
traction, on structures within the field
of view. Hence, it has been speculated
that b-mode USI may be able to en-
hance clinical rehabilitative outcomes
by contributing previously unavailable
information about the structure and be-
havior of muscle to the examination pro-
cess?370105,106120 and by providing useful
feedback about the behavior of muscle
during therapeutic interventions.??*59%
Furthermore, because of its advantages
and capabilities, b-mode USI may have a
role to play in basic, applied, and clinical
rehabilitative research.®20-5257.88.124
Clinical Applications of B-Mode USI:
Evaluation Although used extensively in
the laboratory, the clinical use of b-mode
USI and the evidence base supporting
it are in their infancy. That said, clini-
cians may look to related and emerging
research to speculate on the kinds of
information able to contribute to the ex-
amination process.™*?

B-mode USI is well established as a

tool for measuring the static architec-
tural features of a muscle, the positional
relationships between muscles and/or
other structures, as well as changes in
these features and relationships over
time. For instance, measurements of
assorted muscle parameters (length,
depth, cross-sectional area) for a wide
variety of muscles, including the biceps
brachii,® masseter,'°? cervical”” and lum-
bar*® multifidus, transversus abdomi-
nis,? rectus abdominis,” rectus femoris,’
supra and infraspinatus,5 as well as the
vastus lateralis,’°” have been validated
through comparison to magnetic reso-
nance imaging (MRI). Furthermore, USI
has been used to describe the relation-
ship between the pelvic floor muscles
and the bladder wall,’**'*3 the bladder
neck and symphysis pubis,'* the blad-
der neck and anorectal angle,’®% as well
as the bladder base and the urethro-
vesical neck.! As an extension of this
work, investigators have been able to
demonstrate acceptable interrater and
intrarater reliability for various mea-
surement applications,!878817129 g gen-
erate normal reference ranges,!+105:120
to demonstrate differences in these pa-
rameters over time between normal and
various patient cohorts®100130.133 35 3 re-
sult of therapeutic interventions,’® and
to investigate the relationship between
the size and strength of specific muscles
in varied populations.*67.88145.146
Recently, the role that b-mode USI
has played in detecting the presence of
muscular degeneration resulting from
aging and/or chronic dysfunction has
been investigated. As muscular degen-
eration is associated with a decrease in
water and an increase in fat and fibrous
content,'**?¢ it results in greater echo-
genicity and a loss in the demarcation of
a muscle’s architectural features (muscle
contour, pennate pattern, and the cen-
tral tendon).5¢1?* Although MRI is con-
sidered the gold standard for identifying
these changes, examples of these findings
have been reported with b-mode USI for
several muscles, including the cervical™
and lumbar™® multifidus, the rectus ab-
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dominis,” and the rotator cuff.’** Fur-
thermore, with the use of a qualitative
evaluation tool that has incorporated
both the degree of demarcation of ar-
chitectural characteristics and muscle
echogenicity with respect to a reference
muscle at a set level of gain, Strobel et
al™* have concluded that b-mode USI is
moderately accurate for the detection of
significant levels of fatty atrophy in the
supraspinatus and infraspinatus muscles
when compared against MRI.

B-mode USI has also been used to
comment on changes in architectural fea-
tures of muscle, as well as the positional
relationships of muscles or other struc-
tures in both normal and patient popu-
lations during dynamic events, such as a
muscle contraction (voluntary and auto-
matic) or increases in intra-abdominal
pressure. Specifically, changes in archi-
tectural features of biceps brachii, tibi-
alis anterior, transversus abdominis, and
the internal and external oblique muscles
have been investigated and compared to
the amount of muscle activity present
with electromyography (EMG) during
voluntary contractions.’”®* Furthermore,
automatic changes in these parameters
have also been monitored during specific
tasks. For instance, Ferreira et al®’*de-
scribed changes in the depth and length
of the lateral abdominal wall muscles
during a lower extremity lifting task,
while Kiesel et al” have described chang-
es in the depth of the lumbar multifidus
with a prone arm lift movement. B-mode
display has also been used to monitor the
position of the bladder base," the blad-
der wall,"+132133 the bladder neck,2%106133
and the anorectal angle’®? during vol-
untary pelvic floor muscles contractions,
increases in intra-abdominal pressure
(Valsalva maneuver),"* and lower ex-
tremity lifting tasks.**

Although this work is valuable and
has provided insight into mechanisms of
neuromuscular dysfunction, it has also
highlighted the limits to the information
that USI can provide when considered in
isolation. Specifically, as the relationship
between actual muscle activity (measured
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FIGURE 9. (A) A brightness mode (b-mode) image of the lateral abdominal wall. Abbreviations: EO, external oblique;
10, internal oblique; TrA, transversus abdominis. (B) A split-screen image with b-mode on the left and motion mode
(m-mode) on the right. The m-mode image represents the information from the dotted line on the b-mode image
displayed over time (x-axis). Static structures produce straight interfaces while structures that change in thickness
or depth (in this case the TrA) create curved interfaces. The increase in depth of the TrA correlates to a contraction.
Reproduced with permission Whittaker 20074

with indwelling EMG) and changes in the
architectural features of a muscle (seen
with USI) is nonlinear,”>*” a change in
muscular dimensions may or may not in-
dicate an increase in muscle activity. The
relationship of these 2 factors is unique to
each muscle; however, there is generally a
rapid increase in muscle thickness associ-
ated with lower levels of muscle activity
(approximately less than 25% of maximal
voluntary contraction), which tapers as
activity increases.”” The discrepancy exists
due to limitations of 2-dimensional imag-
ing and the factors related to the length,
pennation pattern, and extensibility of a
muscle, as well as to the potential for a
change in architecture in the presence
of a competing force on the muscle (eg,
contraction of an adjacent muscle or an
increase in intra-abdominal pressure).>
Similar issues arise when describing the
relative change in position of a structure.
Due to these considerations, investigators
must take care during both the interpre-
tation and reporting process. Ultimately,
investigators must be adequately trained
and experienced to be able to detect, re-
liably measure, and interpret the causes
behind a change in one of these previous-
ly mentioned parameters. Furthermore,
care must be taken to limit reporting
to a change in the parameter measured
(eg, thickness) and acknowledge that
any conclusions regarding muscle acti-
vation or the mechanisms behind these

changes are an extrapolation of these
findings. Nevertheless, if these issues are
considered and appropriate care is taken,
accurate analysis and measurement are
possible_9,33,52,57,70,104.,105,120
Clinical Applications of B-Mode USI:
Biofeedback The importance of coor-
dinated muscle effort (neuromuscular
control) has received considerable atten-
tion with respect to the rehabilitation of
cervical and lumbopelvic dysfunction,
as well as incontinence, in recent years.
This is due to an accumulation of evi-
dence pointing to altered neuromuscu-
lar control in individuals with persistent
and recurring symptoms.%152456.60.62,126
Moreover, investigations indicate that
these deficits do not consistently recover
with the resolution of pain*** and are
not addressed with traditional exercise
programs focused on increasing strength
and functional capacity.’* The extrapola-
tion of this work is that the initial focus
of rehabilitation may need to address
these motor control alterations through
a therapeutic intervention rooted in mo-
tor learning. 64134155

As the real-time nature of b-mode USI
allows a patient and therapist to view a
muscle contraction and its impact on sur-
rounding structures directly, it is a unique
tool that may be a novel and previously
unavailable resource to the learning pro-
cess. First, it may serve as a tool that al-
lows a therapist to explain and physically
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demonstrate to a patient the subtleties
of specific motor control impairment;
second, it may serve as a comprehensive
form of biofeedback providing knowledge
of results and performance and enabling
the modification of motor response. Al-
though the literature is unclear as to how
this knowledge might enhance motor
learning or the permanence of these ef-
fects, recent findings?**593139 suggest that
real-time b-mode USI may enhance mo-
tor learning.

Research Applications of B-Mode
USI Research applications of b-mode
USI primarily involve assessment of the
morphological characteristics of muscle
(length, depth, diameter, cross-section-
al area, volume) and changes in these
characteristics, and the corresponding
effect on associated structures (fascia
and organs such as the bladder) with
contraction, dysfunction, or therapeutic
interventions, in an attempt to provide
insight into the mechanisms that underlie
alterations in the neuromuscular system.
Paramount to the investigative process is
the understanding that various factors
influence the robustness and reporting
of these measurements.

At the most fundamental level, this
involves the need for standardization of
imaging and measurement procedures.
This includes definition of measure-
ment site, definition of muscle borders,
as well as matters related to repeated
measurements, such as consistent pa-
tient positioning (eg, joint angle alters
muscle cross-sectional area and length),
transducer location, orientation, and
inward pressure. Ideally, a repeatable
transducer location is achieved through
the use of bony or fascial landmarks that
serve as standard reference points from
which measurements can be taken at
different points in time. If such refer-
ence points are not available within the
ultrasound image, then carefully defined
surface transducer locations generic be-
tween subjects®>1°5129 or regions of the
greatest visualized displacement of a
structure (eg, the region of the bladder
wall that exhibits the greatest displace-

ment during a pelvic floor muscles con-
traction)'*?> may be used. Relocation
of the ultrasound transducer can also be
aided by external markers (eg, freckles or
scars) that can be traced onto a transpar-
ent sheet to form a map of the site and
stored for future use.?*> Furthermore,
the sonographic convention in terms of
positioning the ultrasound device on the
right side of a supine subject (or left side
of a prone subject) is recommended dur-
ing research applications to aid in stan-
dardizing the orientation of the resulting
images.'® However, this protocol may not
always be feasible when assessing dy-
namic functional activities.

To facilitate comparisons between
studies and the development of reference
data for clinical purposes, it is suggested
that future reports related to muscles size
and other characteristics include mean,
standard deviation, range, and 95% confi-
dence intervals. Moreover, as these values
have been found to vary based on gender
and body mass index,'°>"*12° comparison
between individuals may be enhanced by
standardizing the values across subjects
by normalizing the postevent by the pre-
event measurement and expressing this
as a percentage.'?

With respect to statistical analysis,
different tests have been used to inves-
tigate the reliability of USI measures,
most commonly intraclass correlation
coefficients (ICC)"™ with standard error
of measurement (SEM) and minimal
detectable change (MDC).?® Bland and
Altman tests also provide a clinically
meaningful measure of the magnitude
of agreement (95% limits of agreement)
independent of the true variability in the
observations.” These tests have their indi-
vidual strengths and weaknesses, and no
single test is sufficient to reflect reliabil-
ity fully.!°v10315 Tt is recommended that
future studies use all of these methods of
analysis to enable comparison between
reliability studies.

Although b-mode USI has limita-
tions, it nonetheless appears to provide
an opportunity to gather novel informa-
tion. Hence, future work should focus on

determining its clinical utility as both an
evaluative and therapeutic tool. Further,
investigation should be undertaken into
its ability to predict symptomatology, ap-
propriateness for intervention, as well as
categorization of subjects into homoge-
neous cohorts for interventional studies.

M-Mode Ultrasound Imaging

Unlike b-mode, which generates a cross-
sectional image of an anatomical region
using information gathered from the en-
tire length of the transducer (FIGURE 9A),
m-mode displays information collected
from the midpoint of the transducer as
a continuous image over time (as repre-
sented as the dotted line on FIGURE 9B).
With time on the @-axis, and the depth
of the underlying anatomical structure
on the y-axis, the m-mode image repre-
sents changes in thickness, or depth of
a structure, over time and is, therefore,
referred to as “time-motion” mode. For
example, the image in FIGURE 9B displays
the change in thickness of the transver-
sus abdominis muscle from a resting to
contracted state over time.

Investigators have found m-mode
USI to be a reliable technique to mea-
sure muscle thickness.?%9%? Further,
changes in muscle thickness measured
by m-mode have been correlated to those
generated by b-mode.®>*” McMeeken
et al®? found acceptable agreement be-
tween the 2 display modes for measur-
ing changes in thickness of the lateral
abdominal wall muscles. The intrarater
ICC value for b-mode was 0.989, for m-
mode 0.981, and the between-mode reli-
ability was 0.817.

M-mode also provides an opportu-
nity to assess the depth of a structure
over time and allows for the calcula-
tion of the relative timing of muscular
thickness changes. For example, Mittal
et al®* used m-mode USI to assess the
temporal relationships between circular
and longitudinal muscle contractions
during esophageal peristalsis. More ap-
plicable to physical therapy, Vasseljen et
al*® used high-frame-rate m-mode USI
to detect the onset of lumbar multifidus
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activity associated with limb motion,
while Bunce et al®? found that m-mode
USI was able to assess functional com-
ponents of the lateral abdominal muscles
during treadmill walking.

Until recently, m-mode has been a
mode of display used almost exclusively
in echocardiography to assess the struc-
ture and motion of the myocardium and
the heart valves.?**713 Specifically, it has
been used to assess morphological and
functional changes in the myocardium
during isometric exercise? and endur-
ance training,®®*>"2 as well as compari-
son of these changes between different
populations (athletes,® nonathletes,”
and obese individuals™®) and as a func-
tion of age.”

In addition to the above applica-
tions, m-mode USI has been used to
assess pulmonary function, specifically
diaphragm excursion, motility, and pa-
ralysis.?323978113 Furthermore, it has been
found to be beneficial in assisting and
guiding treatment in those with muscu-
lar dystrophy. Researchers assessing dia-
phragmatic motion using m-mode USI
have found that gender, body mass index,
waist circumference, and age influence
the amount of excursion.® These find-
ings highlight the need to further assess
the effects of these variables on measure-
ment of muscular function when using
m-mode for RUSI.

Although the use of m-mode USI in
the assessment of muscle behavior is rela-
tively new,®96982140 it appears to have the
potential to provide unique information.
Specifically, it may assist investigators in
describing changes in the function of the
lateral abdominal wall, posterior spinal,
and pelvic floor muscles associated with
dysfunction.

HIGH-FRAME-RATE USI

ONVENTIONAL M-MODE ULTRA-
sound images are constructed from
data updated approximately 25 to
50 times per second. Although these
frame rates are capable of detecting de-
formation (thickness) and changes in

[ CLINICAL COMMENTARY ]

Ultrasound, Horten, Norway).

FIGURE 10. (A) Tissue velocity imaging. In the bottom left of the figure is a grayscale brightness mode ultrasound
image of the bladder base during subsequent pelvic floor contractions. It is used to navigate and localize 3 measuring
points (red, green, and yellow circles). Above this is the same image with tissue velocity analyzed via colour Doppler
for the 3 sites. By plotting the velocity (cm/s) of the sites (x-axis) against time (y-axis), it can be determined that in
this example there is no difference in velocity between the points. Scanner: Vivid 7, GE-Vingmed Ultrasound, Horten,
Norway. Note the bladder is sparingly filled to better demonstrate displacement. (B) Strain rate imaging. Strain rate
analyses (the rate by which strain occurs) of the same data involve plotting the strain rate period (1/5) against time
(s). In this example strain rate differs at the 3 sites. The tissue marked by the yellow point has a negative strain rate,
indicating that the tissue is compressed at the beginning of the contraction. The tissue marked by the red point initially
exhibits a positive strain rate, indicating elongation; it then exhibits a negative strain rate indicating compression.
The tissue marked by the green point undergoes mild compression and elongation (Scanner: Vivid 7, GE-Vingmed

the depth of a muscle, they are not high
enough to provide information related to
the normal anticipatory response dem-
onstrated by certain muscles?*5+6%89 and
the loss of this response with dysfunc-
tion.>*55587 In fact, to be able to record
anticipatory muscle response (defined as
a contraction occurring from 100 milli-
seconds before and up to 50 milliseconds
after activation of a prime mover?°99),
frame rates need to be on the order of
500 frames per second.'*°

Although intramuscular EMG is con-
sidered the gold standard for evaluating
onset of muscle activity, high-frame-rate
m-mode USI is a promising noninvasive
alternative, as it allows for the visual-
ization of the onset of deformation of
muscle as it starts to contract. For in-
stance, Vasseljen et al'*® demonstrated
that high-frame-rate m-mode USI,
captured at 500 frames per second, has
comparable accuracy (when based on
averaged values of repeated trials) to in-
tramuscular EMG in detecting the onset
of lumbar multifidus activity in healthy
individuals. The superficial location of
multifidus and the use of a high-fre-
quency (12-MHz) transducer made the
high frame rate and ultimately the inves-
tigation possible.

High-frame-rate m-mode USI, along-
side methods such as tissue Doppler, falls
into a category of imaging aimed at inves-
tigating tissue deformation, motion, and
strain. As indicated above, high-frame-
rate m-mode USI can be used to detect
the onset of muscle deformation, as it
shortens and thickens with a contraction.
In contrast, tissue Doppler can be used to
calculate tissue strain and strain rates,**
as well as tissue velocity (FIGURE 10). Both
deformation and velocity imaging can be
derived from conventional ultrasound or
tissue Doppler data; however, strain and
strain rate require postprocessing.

Limitations of high-frame-rate USI
vary across scanning devices. In gen-
eral, the limitations of high-frame-rate
m-mode are similar to b-mode in that
they detect the earliest onset of motion
induced by muscle contraction, whether
as a result of actual contraction or the
displacement of surrounding tissue.
Furthermore, although contraction of a
muscle produces displacement in 3 di-
mensions, m-mode applications are only
capable of providing information about
movement towards or away from the
transducer.”

Although the majority of studies em-
ploying high-frame-rate m-mode USI are
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focused on describing the cyclic motions
and deformation of the heart,?* devel-
opments and experiences in the field of
echocardiology hold potential for the de-
scription of a variety of parameters relat-
ed to the contraction of skeletal muscles
in rehabilitation. Specifically, research
is required to determine whether high-
frame-rate m-mode USI is helpful in in-
vestigating the location of the onset of a
contraction within a muscle, differences
in the onset of muscle activity within
and between individuals or populations
(symptomatic versus asymptomatic), and
these at different points in time, as well
as the sequence, timing, and patterns of
muscle activation. These insights may
provide valuable information to our un-
derstanding of automatic and voluntary
muscle activity.'*!

ELASTOGRAPHY

T IS POSSIBLE TO POSTPROCESS THE

electrical signal produced from the

echo returning from the tissues to the
transducer in such a way as to quantify
tissue movement and deformation in re-
sponse to internal or external mechani-
cal forces.’>9? In the last decade, several of
these techniques (elasticity imaging and
speckle tracking), including elastography,
have been developed.

Elastography was initially conceived
with a goal of quantifying the subjective
information conveyed by palpation of
harder areas within softer tissues, such
as in the clinical detection of tumors
(eg, breast, prostate).”* In the classical
elastography method, the ultrasound
transducer is used to slightly compress
the tissue, while a rapid series of succes-
sive ultrasound images is acquired. Using
cross-correlation methods to postprocess
the ultrasound data, displacement and
strain images are calculated and represent
the amount of movement that small seg-
ments of individual A-lines (the electrical
signal coming from a single transducer)
undergo during the tissue compression.9?
A-line segments with more relative mo-
tion correspond to softer tissue (assum-

ing a uniform strain distribution within
the tissue).

The technique has since been ex-
tended to other applications, including
the use of external sources of tissue mo-
tion (such as vibration), as well as natu-
rally occurring internal motions (such
as breathing, cardiac wall motion, and
arterial pulsation).”>!°® Furthermore, in-
creased availability of high-frame-rate
USI devices has allowed for the use of
handheld transducers, which has simpli-
fied the frame-suspended setups used in
earlier applications.” Due to these ad-
vancements, clinical applications have
expanded to include the detection of liver
fibrosis and deep-vein thrombosis.?¢1%
Musculoskeletal applications include the
quantification of soft tissue displacement
and strain in response to a variety of ex-
ternally applied mechanical inputs such
as tension, compression, and acupunc-
ture needle manipulation.?7476

To date, tissue elasticity imaging
techniques have not been used for re-
habilitation purposes; however, they
hold potential for the detection of dif-
ferences in the biomechanical properties
of muscle and its associated connective
tissue in response to physical tasks. It is
important to keep in mind that elastog-
raphy images do not directly represent
tissue elasticity but, rather, tissue dis-
placement and strain. However, in con-
ditions in which local tissue stress can
be calculated (or estimated), strain and
stress values can be used to map local
tissue stiffness.

Although these elastic imaging tech-
niques hold potential for rehabilitation,
some practical difficulties need to be
overcome. These include access to the raw
electrical ultrasound signal (not avail-
able on most commercially available USI
equipment) and the need for postprocess-
ing of the ultrasound data, which preclude
real-time feedback. Despite these limita-
tions, the dynamic spatial mapping of tis-
sue strain over time offers exciting new
possibilities for quantifying the behavior
of soft tissues in response to externally or
internally generated perturbations.

USI VERSUS OTHER IMAGING
METHODS

——
HE IDENTIFICATION, EVALUATION,
and monitoring of various musculo-
skeletal disorders is expanding due

to technological advancements associated

with MRI, CT, and USI. Specifically, new
and innovative applications are improv-
ing clinical understanding of the under-
lying mechanisms and sequelae common
to musculoskeletal disorders.!1:304047.6684

As such, it is important to consider how

USI and the information that it can pro-

vide compares to these other imaging

technologies.

MRI, CT, and USI provide insight
into various features of the muscular
system, both in asymptomatic as well
as symptomatic individuals,?49:7077105,120
In particular, they provide useful quali-
tative/quantitative measures concern-
ing the muscular system, including the
consequential muscular degeneration
(atrophy and fatty infiltrate) shown to
be common in patients with low back
pain,ll,22,4-7,51,66,75,84,95 neck pain’l,30,40,74,83 and
other peripheral musculoskeletal disor-
ders.’>* Although MRI is considered the
gold standard for musculoskeletal imag-
ing, emerging applications of USI and CT
are capable of providing insight into in
vivo features of the musculoskeletal sys-
tem. Each imaging method has strengths
as well as weaknesses (TABLE).

Magnetic Resonance Imaging

MRI, unlike USI, has multiplanar and
multislice imaging capabilities. It is con-
sidered the gold standard for the evalu-
ation and quantification of soft aqueous
muscular degeneration, as it provides re-
liable measures of degenerative changes
in muscle such as fatty infiltration and
atrophy.11:80-8140.526683.84.9095 There are
2 conventional MRI sequences: T1 and
T2 weighted. Images from T1-weighted
scans demonstrate excellent anatomical
contrast of fat and other soft aqueous
tissues (eg, skeletal muscle).”® Alterna-
tively, T2-weighted scans provide out-
standing detail related to the features
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of inflammation that are suggestive of
neopathological conditions. The draw-
backs of MRI remain cost, accessibility,
constraints in the number of joints that
can be investigated per session, limited
real-time imaging capacity, and vari-
able patient tolerance (eg, claustropho-
bia, metallic implants, pacemaker, and
pregnancy).

Computerized Tomography

CT, like MRI but unlike USI, permits
multislice imaging and can offer better
scan resolution and shorter imaging times
than MRI. However, it is not without the
inherent risks associated with exposing a
patient to ionizing radiation. CT is useful
in diagnosing traumatic musculoskeletal
injuries, such as fractures, and has been
effectively used to evaluate and quantify
cross-sectional area of paraspinal muscu-
lature in patients with low back pain.?>7
While CT produces high-quality images,
they are dependent on tissue densities in
order to provide contrast. When tissue
densities between pathologic and adja-
cent anatomy are similar, contrast media
may be required for differentiation, ren-
dering CT inadequate if a patient has a
history of contrast reaction.®°

Ultrasound Imaging

USI, although less sophisticated in terms
of resolution than MRI and CT, has ad-
vantages as a safe, cost-effective, porta-
ble, and clinically accessible method for
gathering information about the static
characteristics of muscle,*#370.74105.120,124 44
well as muscle behavior during dynamic
events.’*”” As such, it shows promise as
a tool in musculoskeletal examination
and treatment. Moreover, unlike CT,
USI does not expose the patient to ion-
izing radiation and is well tolerated by
patients. A feature unique to USI is its
dynamic capability of scanning in real
time, which makes it superior to MRI
and CT for evaluating mobile structures
such as tendons, nerves, and muscles,
and it may become an important tool for
directing appropriate physical therapy
treatment decisions.?” However, as high-
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COMPARISONS BETWEEN DIFFERENT IMAGING MODALITIES
USED IN THE ASSESSMENT OF MUSCULOSKELETAL DISORDERS*
MRI usl CT
Cost Expensive Inexpensive Intermediate
Ease of accessibility Difficult Easy Difficult
lonizing radiation None None Yes
Supports intervention Yes Yes Yes
Operator-dependent No Yes No
Imaging capability
Planes Multi Variable axes to joint surface Multi
Anatomy
Muscle Excellent Good Fair
Fat Excellent Fair No role
Tendons and sheaths Good Excellent No role
Ligaments Good Excellent No role
Synovial membrane Good Excellent No role
Bone Excellent Good Good
Cartilage Good Excellent Fair
Inflammation Excellent Good No role
Number of joints/session Few Many Few
Real-time scanning Cardiac only Yes No
Patient tolerance Variable Good Variable
* Adapted from Tan et al'*” with permission.
Abbreviations: CT, computerized tomography; MRI, magnetic resonance imaging; USI, ultrasound
imaging.

lighted throughout this commentary,
USI is not without disadvantages and is
highly operator dependent. Perhaps the
most promising feature of USI is its ac-
cessibility and the feasibility for physical
therapists to acquire the skills needed to
incorporate its use into clinical practice.
However, evidence for its use in differ-
ent applications within rehabilitation is
needed before widespread routine clini-
cal use can be promoted.

FUTURE CONSIDERATIONS

T IS UNCLEAR WHETHER THE EVALU-

ation of muscular and motor control

abnormalities differs across imaging
technologies, muscle, body regions, body
side, varying diagnoses, and assorted
anthropometric variables. Further, the
value of USI from a pathoanatomical and
pathophysiological perspective, although
under investigation, has yet to be deter-
mined. Although innovations in muscu-
lar imaging research are enhancing our

understanding of muscle dysfunction,
degeneration, and control, and slowly
influencing clinical practice, there is a
need to standardize techniques that are
cost effective, reliable, easily accessible,
and well tolerated by both patients and
clinicians in order to ensure their appro-
priate use.

Future research efforts should address
the diagnostic and prognostic validity of
USI in patients with acute musculoskel-
etal pain and a wide variety of muscu-
loskeletal disorders by comparing USI,
MRI, EMG, and perhaps CT results.
Randomized control trials are also need-
ed that include comparison of interven-
tions incorporating RUSI to those that
do not to examine whether USI biofeed-
back improves outcomes. Ultimately,
such studies could provide appropriate
evidence-based evaluation and treat-
ment strategies that incorporate RUSI as
an outcomes measure. Routine adoption
of RUSI in physical therapy requires ap-
propriate training programs.
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CONCLUSION

HE GOAL OF THIS COMMENTARY HAS

been to provide an overview of ba-

sic USI and instrumentation prin-
ciples, including an understanding of the
various modes and applications of the
technology with respect to neuromuscu-
loskeletal rehabilitation and in relation to
other common imaging modalities. In do-
ing so, we hope that the reader has gained
a greater understanding of the value of
this tool both from a clinical as well as an
investigative perspective. Although other
imaging modalities may be superior in
providing some, although not all, of the
information available with USI, there is
growing access to, and evidence in sup-
port of, its use by physical therapists. As
such, it is imperative that there is support
for further investigation with regard to its
potential and also a greater understand-
ing of its limitations, as it is likely that
the full significance of USI in relation to
rehabilitation has yet to be established.
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APPENDIX

GLOSSARY OF TERMS

Acoustic shadowing—The reduction of sound wave echoes from
structures that lie behind a strongly reflecting or attenuating struc-
ture (eg, bone)™

A-line—An electrical signal corresponding to the scattering and re-
flection of ultrasound from tissue or other media, generated from a
single ultrasound transducer either used alone, or as part of a linear
(brightness-mode) array

A-line segment—A small portion of an A-line used in elastography
cross-correlation analysis

Artifact—Incorrect representations of anatomy or motion (eg, situ-
ations that result in structures that are not real, missing, improp-
erly located, or of inaccurate brightness, shape, or size). Examples
include acoustic shadowing, edge shadowing, enhancement, and
reverberation'?

Attenuation—The reduction in the intensity or amplitude of a sound
wave, expressed in decibels (dB/cm!/MHz!) and caused by absorp-
tion, scattering, and reflection of the sound wave as it travels. As at-
tenuation increases, penetration decreases™

B-mode—Brightness or brilliance mode

Cavitation—Refers to the production and behavior of gas bubbles
within a liquid when exposed to the sound wave. This behavior
can be variable (eg, oscillation or collapse) and depends upon fac-
tors such as the size of the cavity, and the nature of the immediate
environment®!

Doppler imaging—The basic principle of Doppler ultrasound lies
in the observation that the frequency of a sound beam reflected back
to its source is altered when it encounters a moving object.'*® As the
change in frequency is proportional to the velocity of the object, Dop-
pler imaging can be used to display flow (blood) or tissue velocity

related information

Echogenic—A structure or material that produces echoes (eg, reflec-
tion of ultrasound waves). The more echogenic a structure or sub-
stance is, the whiter it will appear within an ultrasound image™*

Edge (refractile) shadowing—Refers to specific type of acoustic
shadow that is generated when a sound wave encounters an object
with a curved surface (eg, bladder or cyst). The shadow is observed at
the lateral margins of the object where the sound beam contacts the
interface at a very oblique angle. As a result of both refraction and
reflection, none of the incident sound returns to the transducer from
this region and a shadow results

Enhancement—The strengthening of a sound wave echo distal to
a weakly attenuating structure (eg, a fluid-filled organ such as the
bladder)™

Far-field—The bottom half of the ultrasound screen, which represents
that part of the body furthest from the ultrasound transducer?

Field of view (FOV)—Refers to what is visible on the ultrasound dis-
play FOV and is dictated by the shape (curvilinear versus linear) and
width of the transducer, as well as the depth setting of the image dis-
play. The ultimate depth of the FOV is determined by the frequency
of the transducer, the power setting of the ultrasound device, as well
as the characteristics of the medium that is being imaged

Frame rate—The number of frames of echo information stored each
second™

Frequency—The number of oscillations a molecule or a sound
wave undergoes in 1 second. Frequency is expressed in Hz'?:
1 Hz = 1 cycle per second; 1 kHz = 1000 cycles per second; 1 mHz =
1000000 cycles per second
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Gain—Refers to amplification (expressed in dB) of the echoes return-
ing from the tissues back to the transducer. The degree of amplifica-
tion is under the voluntary control of the operator?2

Hyperechoic—A structure or substance that is more echogenic
(whiter and brighter on the ultrasound screen) than surrounding tis-
sue. The surface of bone and dense fascia are examples of hyperechoic
media™?

Hypoechoic—A structure or substance that is less echogenic (darker
on the ultrasound screen) than surrounding tissue. Fluids such as
blood and urine are examples of hypoechoic media'*?

Impedance—The resistance that a tissue or medium has to sound.
Acoustic impedance depends upon the density of the medium and the
speed at which sound can travel through it. It is expressed in rayls?

Incidence angle—The angle between the sound coming from the
transducer (incident sound) and a line perpendicular to the bound-
ary of a medium?™

Intensity—The rate at which energy is delivered per unit area.” The
intensity of an ultrasound wave is determined by the total power out-
put of the transducer (W) divided by its effective radiating area (cm?)
and expressed in units of mW/cm?

M-mode—Motion mode, sometimes referred to as time-motion (TM)
mode

Morphology—The study of form and structure.?” With respect to
muscle, this refers to describing characteristics of its dimensions (eg,
cross-sectional area, length, shape ratios, and depth/thickness), as
well as tissue composition

Morphometry—The quantitative measurement of form.”™ With
respect to muscle, this refers primarily to measurement of its di-
mensions (eg, cross-sectional area, length, shape ratios, and depth/
thickness). Morphometry does not consider tissue composition

Motor control—“An area of study dealing with the understanding of
the neural, physical, and behavioral aspects of movement.”™ Relates
to the timing, magnitude, and sequencing of muscle activation and
relaxation

Motor learning—A set of internal processes associated with practice
or experience leading to relatively permanent changes in the capabil-
ity for motor skill™

Muscle behavior—Observable activity or the response of muscle dur-
ing a specific event or given set of circumstances. The behavior of
muscle can be described by changes in its electrical properties over
time or architectural characteristics (cross-sectional area, length,
depth/thickness, or relationship to adjacent structures)

Muscle cross-sectional area (CSA)—A quantitative 2-dimensional
measure of the plane of a structure created by cutting through it
transversely.?” Anatomical CSA refers to the CSA at 90° to the long
axis (or direction) of the muscle fibers. Physiological CSA is not mea-
sured 90° from the long axis of the muscle fibers. Physiological CSA is
commonly generated with rehabilitative ultrasound imaging (RUSI),
for instance with muscles that have complex internal architecture
such as the lumbar multifidus in which the fascicles pass in a caudal-
lateral direction over the vertebrae

Muscle inhibition—Reflex inhibition is the reduction or elimination
of muscle activity associated with afferent stimuli from joint recep-
tors that reduce activation of alpha motor neurons in the anterior
horn of the spinal cord (eg, reflex inhibition of quadriceps has been
demonstrated in the presence of knee joint damage in the absence of
pain).” Voluntary inhibition refers to an unwillingness to contract a

muscle due to pain or fear of pain

Muscle thickness (depth)—A quantitative linear measure from the
superficial to deep aspects of a muscle.?® Baseline or resting thickness
refers to the thickness of a muscle in a perceived resting state

Near-field—The top half of the ultrasound screen, which represents
that part of the body closest to the ultrasound transducer'

Operating frequency—The preferred (maximum efficiency) fre-
quency of operation of a transducer.”” The operating frequency can
also be referred to as the resonance or main frequency

Penetration—Refers to the ability for sound to travel through media,
thereby influencing image depth. Penetration is dependent upon the
strength (intensity) and frequency of the sound wave, as well as the
compressibility of the medium that it travels through. In descriptive
purposes, penetration refers to image depth?42

Pixel —An abbreviation of “picture element.” A pixel refers to the
smallest unit of a digitized, 2-dimensional image. A pixel can be de-
scribed by its location (a set of  and y coordinates), as well as its
brightness™

Piezoelectric effect—A phenomenon in which some materials (ce-
ramic, quartz, etc) produce a voltage or electrical current when de-
formed by an applied pressure, such as sound”™

Real-time ultrasound imaging (RTUS)—The rapid sequential dis-
play of ultrasound images resulting in a moving presentation”**

Reflection—As a sound wave propagates it attenuates (loses energy).
Reflection is one form of attenuation and refers to the portion of the
sound wave that is reflected back towards the source of the sound.
This reflected wave is received and processed to generate an ultra-
sound image™142

Refraction—Refers to the change in direction of a wave when it
crosses a boundary. It comes from the modification of a Latin term
meaning “to turn aside””

Resolution—A measure of the ability of an instrument to show
detail'?®

Scatter—Describes the generation of secondary waves (fractions) in
response to the primary sound wave encountering a rough surface or
heterogeneous media. Scattering is often referred to as diffusion>!*?

Sonography—The term used to describe imaging resulting from
ultrasound. The Latin word sonus is sound, and the Greek word
graphien is to write”

Sound—Mechanical energy that propagates through air, water. or
any other matter in an orderly, rhythmic fashion, as determined by
the molecular makeup of the transmitting medium?>13#

Strain—Mechanical deformation of a structure as the result of stress

Strain rate —Strain rate refers to the instantaneous strain (or change
in strain) per time unit. The strain rate has the same direction as
the strain (eg, negative strain rate during shortening, positive strain
during elongation)

Transducer—Any device that converts one form of energy into an-
other. The piezoelectric crystal is a transducer that converts electrical
energy into sound energy and vice versa’™

Transducer assembly (commonly referred to as a transducer)—
Consists of the transducer elements, their associated casing, and
dampening material™?
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